Drying effects on archaeal community composition and methanogenesis in bromeliad tanks.

نویسندگان

  • Franziska B Brandt
  • Guntars O Martinson
  • Bianca Pommerenke
  • Judith Pump
  • Ralf Conrad
چکیده

Tank bromeliads are highly abundant epiphytes in neotropical forests and form a unique canopy wetland ecosystem which is involved in the global methane cycle. Although the tropical climate is characterized by high annual precipitation, the plants can face periods of restricted water. Thus, we hypothesized that water is an important controller of the archaeal community composition and the pathway of methane formation in tank bromeliads. Greenhouse experiments were established to investigate the resident and active archaeal community targeting the 16S rDNA and 16S rRNA in the tank slurry of bromeliads at three different moisture levels. Archaeal community composition and abundance were determined using terminal restriction fragment length polymorphism and quantitative PCR. Release of methane and its stable carbon isotopic signature were determined in a further incubation experiment under two moisture levels. The relative abundance of aceticlastic Methanosaetaceae increased up to 34% and that of hydrogenotrophic Methanobacteriales decreased by more than half with decreasing moisture. Furthermore, at low moisture levels, methane production was up to 100-fold lower (≤0.1-1.1 nmol gdw(-1) d(-1)) than under high moisture levels (10-15 nmol gdw(-1) d(-1)). The rapid response of the archaeal community indicates that the pathway of methane formation in bromeliad tanks may indeed be strongly susceptible to periods of drought in neotropical forest canopies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions.

Phytotelmata in tank-forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aec...

متن کامل

Bromeliad Catchments as Habitats for Methanogenesis in Tropical Rainforest Canopies

Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5-6.5) and anaerobic (<1 ppm O(2)) environment suspended in the canopy. Results from a Costa Rican rainforest show that most bromeliads (n = 75/86) greater than ~20 cm in plant height or ~4-5 cm tank depth, showed prese...

متن کامل

Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community

The addition of ferrihydrite to methanogenic microbial communities obtained from a thermophilic anaerobic digester suppressed methanogenesis in a dose-dependent manner. The amount of reducing equivalents consumed by the reduction of iron was significantly smaller than that expected from the decrease in the production of CH4, which suggested that competition between iron-reducing microorganisms ...

متن کامل

Response of Methanogenic Microbial Communities to Desiccation Stress in Flooded and Rain-Fed Paddy Soil from Thailand

Rice paddies in central Thailand are flooded either by irrigation (irrigated rice) or by rain (rain-fed rice). The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated a...

متن کامل

Transcriptomics in the tropics: Total RNA-based profiling of Costa Rican bromeliad-associated communities

RNA-Seq was used to examine the microbial, eukaryotic, and viral communities in water catchments ('tanks') formed by tropical bromeliads from Costa Rica. In total, transcripts with taxonomic affiliation to a wide array of bacteria, archaea, and eukaryotes, were observed, as well as RNA-viruses that appeared related to the specific presence of eukaryotes. Bacteria from 25 phyla appeared to compr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2015